C35L High Power LED #### Introduction The C35L LED from SemiLEDs brings industry leading technology to the solid state lighting market with its high quality and performance. With a silicone lens, C35L LEDs from SemiLEDs feature very high brightness and efficacy, as well as excellent lifetime. C35L LEDs also feature a special design to fit secondary optics for various lighting applications. The user can easily get uniform light with any secondary optics. #### **Table of Contents** | Characteristics | 1 | |--------------------------------------|----| | Relative Spectral Power Distribution | 3 | | Typical Spatial Radiation Pattern | 3 | | Thermal Design | 5 | | Typical Forward L-I Characteristics | 6 | | Typical Forward I-V Characteristics | 7 | | Mechanical Dimensions | 8 | | Recommended Solder Pad Design | 9 | | Packing Information | 10 | | Recommended Soldering Profile | 11 | | Daliability | 12 | #### **RoHS Compliant** ### **Characteristics** #### **Absolute Ratings** | Dovernator | Rating | | | | | |---------------------------|--|--|--|--|--| | Parameter | Royal Blue / Blue / Green / Cyan / Amber / Red | | | | | | DC Forward Current (mA) | 700 mA | | | | | | LED Junction Temperature | 125 ℃ | | | | | | LED Operating Temperature | -40°C ~110°C | | | | | | Storage Temperature | -40°C ~110°C | | | | | | Soldering Temperature | Max. 260°C / Max. 10sec. (JEDEC 020c) | | | | | | ESD Sensitivity | 2,000 V HBM (JESD-22A-114-B) | | | | | | Daviers Maltage | Not design to be driven in reverse bias | | | | | | Reverse Voltage | (VR≦5V) | | | | | | Preconditioning | Acc. to JEDEC Level 2 | | | | | #### **General Characteristics at 350mA** | Part number | Color | Dominant Wavelength λ_{d} Peak Wavelength λp * | | $\lambda_{\sf d}$ | | 2θ _{1/2} | Temperature
Coefficient
of
Vf (mV/°C) | Thermal Resistance Junction to Pad | |-------------|------------|--|------|-------------------|-------------------------|--------------------------|--|------------------------------------| | | | Min | Max | | $\Delta V_F/\Delta T_J$ | (°C/W) RΘ _{J-L} | | | | C35L-U | UV | 390 | 420 | 125 | -4 | 8 | | | | C35L-R | Red | 620 | 635 | 125 | 1 | - | | | | C35L-A | Amber | 580 | 600 | 125 | - | - | | | | C35L-G | Green | 520 | 535 | 125 | -3 | 8 | | | | C35L-C | Cyan | 500 | 510 | 125 | -3 | 8 | | | | C35L-B | Blue | 460 | 470 | 125 | -3 | 8 | | | | C35L-D | Royal Blue | 440 | 460* | 125 | -3 | 8 | | | #### Notes: 1. The peak/dominant wavelength is measured with an accuracy of ±1nm #### **Luminous Flux and Forward Voltage** | | | Pe | rformance at Test Current (35 | Performance at 700mA | | | |----------------|-------------|---|-------------------------------|----------------------|------|---| | Dort | Color | | Minimo | V | /F | Typical | | Part
number | | Group Luminous Flux (Im) or Radiometric Power* (mW) | | Min | Max | Luminous Flux (Im) or
Radiometric Power*
(mW) | | | 1150 | D1 | 200* | 3.0 | 4.0 | 340* | | / | U50 | D2 | 240* | 3.0 | 4.0 | 410* | | | (390~400nm) | D3 | 280* | 3.0 | 4.0 | 475* | | | | D1 | 200* | 3.0 | 4.0 | 340* | | | U60 | D2 | 240* | 3.0 | 4.0 | 410* | | C35L-U | (400~410nm) | D3 | 280* | 3.0 | 4.0 | 475* | | | | D4 | 320* | 3.0 | 4.0 | 545* | | | U70 | D2 | 240* | 3.0 | 4.0 | 410* | | | | D3 | 280* | 3.0 | 4.0 | 475* | | (41 | (410~420nm) | D4 | 320* | 3.0 | 4.0 | 545* | | | | D5 | 360* | 3.0 | 4.0 | 610* | | | Red | KC | 35.2 | 2.0 | 3.5 | 68 | | C35L-R | | MB | 39.8 | 2.0 | 3.5 | 77 | | | | MC | 45.7 | 2.0 | 3.5 | 85 | | | | KC | 35.2 | 2.0 | 3.5 | 68 | | C35L-A | Amber | MB | 39.8 | 2.0 | 3.5 | 77 | | | | MC | 45.7 | 2.0 | 3.5 | 85 | | C35L-G | Green | NC | 56.8 | 2.75 | 3.75 | 100 | | C33L-G | Green | ND | 62 | 2.75 | 3.75 | 110 | | C251_C | Cyan | NC | 56.8 | 2.75 | 3.75 | 100 | | C35L-C | | ND | 62 | 2.75 | 3.75 | 110 | | C35L-B | Blue | IC | 14 | 2.75 | 3.75 | 27 | | | | JB | 18 | 2.75 | 3.75 | 33 | | | Royal Blue | D2 | 240* | 2.75 | 3.75 | 435* | | C35L-D | | D3 | 280* | 2.75 | 3.75 | 500* | | | | D4 | 320* | 2.75 | 3.75 | 570* | #### Note: - 1. Luminous flux is measured with an accuracy of ±10% - 2. The forward voltage is measured with an accuracy of $\pm 0.1 V$ ## Relative Spectral Power Distribution, Ta=25 °C UV / Royal Blue / Blue / Cyan / Green / Amber / Red # **Typical Spatial Radiation Pattern** C35L-D, C35L-B #### C35L-G, C35L-C #### C35L-A, C35L-R ## **Thermal Design** Thermal design of the end product is important. The thermal resistance between the junction and the solder point $(R\Theta_{J-P})$ is 8° C/W, and the end product should be designed to minimize the thermal resistance from the solder point to ambient in order to optimize the emitter life and optical characteristics. The maximum operation current is determined by the plot of Allowable Forward Current vs. Ambient Temperature. The junction temperature can be correlated to the thermal resistance between the junction and ambient (Rja) by the following equation. Tj: LED junction temperature Ta: Ambient temperature Rja: Thermal resistance between the junction and ambient W: Input power (I_F*V_F) ## **Typical Forward L-I Characteristics** Blue / Royal Blue / Green / Cyan #### Amber / Red # **Typical Forward I-V Characteristics** Blue / Royal Blue / Green / Cyan #### Amber / Red ## **Mechanical Dimensions** #### Notes: - 1. Drawing is not to scale - 2. All dimensions are in millimeter - 3. Dimensions are ± 0.13 mm unless otherwise indicated 0.50 1.30 # **Recommended Solder Pad Design** #### **Recommended Soldering Pad Design** #### Recommended Stencil Pattern Design (Mark Area is Opening) #### Notes: - 1. Drawing is not to scale - 2. All dimensions are in millimeter # **Packing Information** The carrier tape conform to EIA-481D. #### Note: 1. All dimensions are in millimeter. ## **Recommended Soldering Profile** The LEDs can be soldered using the parameter listed below. As a general guideline, the users are suggested to follow the recommended soldering profile provided by the manufacturer of the solder paste. Although the recommended soldering conditions are specified in the list, reflow soldering at the lowest possible temperature is advised for the LEDs. | Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly | | |---|-------------------------|------------------|--| | Average Ramp-up Rate (Ts _{max} to Tp) | 3℃/second max. | 3°C/second max. | | | Preheat | | | | | Temperature Min(Ts_{min}) | 100 °ℂ | 150 ℃ | | | Temperature Max(Ts_{max}) | 150 ℃ | 200 ℃ | | | - Time(ts _{min} to ts _{max}) | 60-120 seconds | 60-180 seconds | | | Time maintained above: | | | | | - Temperature(T _L) | 183°C | 217 ℃ | | | - Time(t _L) | 60-150 seconds | 60-150 seconds | | | Peak/classification | 215 ℃ | 260 ℃ | | | Temperature(Tp) | | | | | Time within 5°C of actual Peak | 10.20 seconds | 20.40 seconds | | | Temperature(tp) | 10-30 seconds | 20-40 seconds | | | Ramp-Down Rate | 6°C /second max. | 6°C/second max. | | | Time 25℃ to Peak Temperature | 6 minutes max. | 8 minutes max. | | # **Reliability Information** | Stress Test | Stress Condition | Stress Duration | |---|---------------------------|-----------------| | Room Temperature Operating Life (RTOL) | Tb=25°℃, If=700mA | 1000 hours | | High Temperature Operating Life (HTOL) | Tb=85°C, If=700mA | 1000 hours | | Wet High Temperature Operating Life (WHTOL) | Ta=85℃, RH=85%, If=700mA | 1000 hours | | Temperature Cycles (TMCL) | -40°C/125°C, 15min dwell, | 200 cycles | | | 5min transfer | | | High Temperature Storage Life (HTSL) | Ta=110°C, non-operating | 1000 hours | | Low Temperature Storage Life (LTOL) | Ta=-40°C non-operating | 1000 hours | | Solder Heat Resistance (SHR) | 260°C, 10 sec | | #### Failure Criteria: 1. Brightness attenuate difference <10% 2. Forward voltage difference: ±20% #### Note: 1. Tb: board temperature 2. Ta: ambient temperature #### **About Us** SemiLEDs Corporation is a US based manufacturer of ultra-high brightness LED chips with state of the art fabrication facilities in Hsinchu Science Park, Taiwan. SemiLEDs specializes in the development and manufacturing of vertical LED chips in blue (white), green, and UV using a patented copper alloy base. This unique design allows for higher performance and longer lumen maintenance. In December 2008, The World Economic Forum recognized SemiLEDs innovations with the 2009 Technology Pioneer Award. SemiLEDs is fully ISO 9001:2008 Certified SemiLEDs is a publicly traded company on NASDAQ Global Select Market (stock symbol "LEDS"). For investor information, please contact us at investors@semileds.com. For further company or product information, please visit us at www.semileds.com or please contact sales@ semileds.com. ## www.semileds.com #### **ASIA PACIFIC** 3F, No. 11, KeJung Rd. Chu-Nan Site Hsinchu Science Park Chu-Nan 350, Miao-Li County Taiwan, ROC > Tel: +886-37-586788 Fax: +886-37-582688 sales@semileds.com